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Aspects of Information Theory 

1. Chance and probability 

 

How to define quantitatively “randomness” or “chaoticity” for a state 

and a process? Randomness has the connotation of “erratic” and “un-

predictable.” But the concept is difficult to quantify. For example, it is 

not obvious which of the two 100-particle configurations placed side by 

side in Fig. 1 is more random, more chaotic. In contrast to random 

states, the future behavior of a system in a stable, stationary state is 

predictable in its characteristic properties from the initial conditions and 

the appropriate equations of motion. But there is either not enough in-

formation available for a 

(classical) chaotic system, 

or what is available cannot 

be processed sufficiently 

well. Rather than with 

certainty, for chaotic 

and (fully or partially) 

random systems one has 

to work just with proba-

bilities. In a different way, 

quantal systems are inher-

ently always probabilistic, even for pure states. 

 

In the absence of information, probability replaces certainty. In-

formation theory provides probability as an objective link be-

tween randomness and certainty. 

 

What is probability? One can think of repeated spinning of a rou-

lette wheel, or the throwing of dice or coins, each a very large number 

of times N, for example, N =1000 throws of one dice or one throw each 

of N=1000 dice. These mechanical devices are capable of unpredicta-

ble, chaotic motion with seemingly random outcomes. Each set of 

1000 independent observations (number hit on the roulette wheel, num-

ber on face of die,..) forms a “statistical ensemble” representing 

Figure 1: Two possible 2-dim systems of 100 par-

ticles each distributed differently over the availa-

ble space.   
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possible configurations (states) of the system (wheel, die,..) populated 

in the process of spinning, throwing, etc.  

 

The probability is defined in relation to a given set of experiments, 

a statistical ensemble representing a large number of possible system 

configurations. Then, in the above example the probability to throw a 

“6” with a perfect die is calculated from the number of times this face 

shows up in a throw. Say, one observes N(6)=165 times a die with the 

face “6” on top. Then, the measured frequency of occurrence of this 

type of event is 

 

                   ( ) ( ) P 6  = N 6 N = 165 1000  1 6  (1) 

 

In other trials of the same experiment, one may obtain different fre-

quencies for the event “6”, e.g., {P(6)}= {173, 160, 155, 167, 182,…}. 

This set of different numbers P(6) defines a distribution of frequen-

cies. The mean (= average = <P(6)=N(6)/N>) of all experiments is 

the experimental observation of interest for the mean frequency of face 

“6”. The spread of this distribution is given by the variance, which rep-

resents an experimental error or uncertainty. 

 

If the frequencies are meas-

ured for a large number of events 

(wheels spins, dice throws,..), i.e., 

for very large ensembles, the 

means of the frequency distribu-

tions approximate the probabilities 

to an arbitrary accuracy. There-

fore, these mean frequencies are 

also called a posteriori probabil-

ities. For example,  

                                  

                              
!

N

N(6) 1
P(6) lim

N 6→
= =        (2) 

 

Figure 2: Study chance and probability 

in throwing of dice (Pi=1/6). 



      

Information/Prob   
W. Udo Schröder 

 

3 

for the type of event considered in the example of dice throwing. In 

contrast, the a priori probability is defined as an idealization, a the-

oretical expectation: Assuming an ideal die with numbers 1, 2, 3, 4, 5, 

6 printed on its otherwise identical faces, each face has the same a 

priory probability to show in any throw. Every number has the same 

chance to be on top in any given throw. 

 

If after one particular throw giving face “6”, the same perfect die is 

rolled again, or if another perfect die is used in that throw, the chance 

(=a priory probability) to get a 6 (or any other number between 1 and 

6) is still 1/6. Therefore, the probability to get a face “6” in either the 

first or the second throw is the sum of both,  

 

 1 2 1 2

1 1 1
P (6) P (6) P (6)

6 6 3 = + = + =  (3) 

 

Uncorrelated or mutually exclusive events (E1 and E2) are also called 

disjoint events. The outcome of one trial (Event E1) has no effect on 

the result of the next trial (Event E2).  The corresponding probabilities 

are independent of one another and add (as in Equ.(3)). This is the sum 

rule for disjoint (independent) probabilities. 

 

On the other hand, one may ask what the (a priori) joint (simulta-

neous) probability or chance is for the throwing of 2 faces “6” in two 

independent throws. Obviously, in total there are 6·6 = 36 possible com-

binations of two die faces. Therefore, the joint probability for obtaining 

two faces “6” simultaneously is 1 in 36, 

 

 1 2 1 2

1 1 1
P (6|6) P (6) P (6)

6 6 36 =  =  =  (4) 

 

The simultaneous probability of two uncorrelated events is the product 

of the individual probabilities. 

 

 One can summarize the properties of the (a priori) probabil-

ities P of events: 
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• The probability for an event is 0 ≤ P ≤ 1 

• The probability for any of the possible outcomes to occur is 

1i

i

P =  

• The probability of an impossible event is zero, P=0. 

• If two events (E) 1 and 2 are independent (disjoint, mutually 

exclusive), the probabilities of the sum (“or”) event is the sum 

of the probabilities, 1 2 1 2P P P = + . 

• If two events 1 and 2 are independent (disjoint, mutually ex-

clusive), the probability for the simultaneous event is the 

product of the probabilities, 1 2 1 2P P P =  . 

• If two events are not mutually exclusive, 1 2 1 2 1 2P P P P = + − . 

 

In addition, one has to consider cases of conditional (or marginal) 

probabilities, 

                             1 2 1 2P E | E : Probability E , given E=  (5) 

 

Here, event E2 constitutes a boundary condition for all events E1 to be 

considered but is not necessarily element in a causal chain. For example, 

one could ask for the probability that the solute in a solution precipitate, 

given that the solution is supersaturated in that component. 

 

The following rules are evident for conditional probabilities: 

 

 ( )   ( )   ( )1 2 2 1 1 1 2 2P E E P E | E P E P E | E P E =  =   (6) 

 

If E1 and E2 are independent,  
 

 

   ( )   ( )and2 1 2 1 2 1P E | E P E P E | E P E= =  (7) 

 
What the effect of E2 is on the conditional probability  1 2P E | E de-

pends on the relation between the two classes of events, more accu-

rately on the dependence of the probability domains (P≠0). 
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In Fig. 3, several 

possible relations are 

illustrated between 

the domains of  1P E

,  2P E , and  1P E .  

The probability do-

main  1P E  corre-

sponds to the exclu-

sion (non-occur-

rence) of E1. An ex-

ample of the condi-

tional probability in-

volving disjoint 

events is the proba-

bility that a dice 

throw has resulted in 

the face “5”, given 

that the result was an 

even number, i.e., in the present notation  1 2P E " 5" | E even 0= = = .    

 

If events E1 and E2 are independent of each other, or if the class of 

events E2 includes that of E1, then E2 has no influence on the probability 

for E1 and therefore    1 2 1P E | E P E=  (Fig. 3). If the two events are dis-

joint, mutually exclusive, then  1 2P E | E 0= . 

The above equations (6) and (7) are equivalent to , 

  

    
( )
( )

1
1 2 2 1

2

P E
P E | E P E | E

P E
=   (8) 

  

 

 
  

Figure 3: Probability domains for two different event 

classes that are (clockwise) independent and disjoint, 

overlapping, inclusive, disjoint and mutually exclusive. 

2
E  
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2. Information and probability 

 

The events and probabilities of interest in the present context refer 

to the occupation of states of physical systems, the density of 

states occupied in the corresponding “phase space.” For example, 

one is interested in the intensity spectrum of a laser pulse, the size and 

growth rate of a population subgroup under certain conditions, the 

spread in the number of occupied cells in a cellular automaton, etc. The 

necessity for involving probabilities arises from the accessibility to the 

system of interest of different equivalent states and the lack of 

knowledge, in which of these states the system resides at any given 

time.  

 

The difference between the probability to find a system in a certain 

configuration and certainty is caused by the lack of prior information, 

which can be large if the accessible phase space is large and the motion 

is fairly unrestrained (“disordered” or “chaotic”). In order to be able to 

make predictions for the evolution of the system, it is important to quan-

tify this missing information based on a priori properties of the system 

states and for a range from orderly to random modes. The following 

discussion illustrates the intrinsic connections between probability and 

information for systems that have countable discrete states. While this 

latter feature is observed for all bound states of microscopic systems 

(e.g., molecules, atoms, nuclei, nucleons,..), the concept can be ex-

tended to continuous states invoking minimum quantal phase space 

cells. The principles developed below have therefore a rather broad 

range of validity.   

 

The connection between probability and 

lack of information (Claude Shannon, 1948) 

can be illustrated with cellular automata. 

Here, each cell can be viewed to represent a 

cell in the phase space of a physical system. 

A cell could be occupied by a particle or could 

be unoccupied. Consider the one-dimen-

sional automaton of 8 cells pictured in Fig. 4. If it were known that only 

 1    2   3   4   5   6   7    8 

Figure 4: Automaton with one 

cell (#2) occupied.  
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one specific cell were accessible, say cell #1, the sole particle of the 

system would be known to be in that cell with certainty (P(2)=1). No 

information would be missing. 

 

Now assume, all N=8 cells were identical and equally accessible to 

the particle. Each cell has therefore two possible states (occupied=1 or 

not occupied=0). In total, there are N=23 possible states of the autom-

aton. Since the cells are identical, they have equal a priory probabilities 

to be occupied, and the actual location of the particle is unknown and 

“completely uncertain.” The question is how much information is missing 

prior to an observation, or is obtained when the location of the particle 

is revealed. One only knows that the missing information is at a 

maximum if all states are a priori equally likely. If not all cells were 

equally likely to be occupied, less information would be missing.  

 

As a measure of the magnitude of the missing information, one can 

take the number of inquiries necessary to determine the state of the 

automaton, i.e., determine which cell is occupied. There are many more 

or less efficient strategies one could apply to obtain the missing infor-

mation. The simplest consists in dividing the space into successively 

smaller halves. One could start with asking whether the particle is in the 

right half (cells #5-8). Since in the example of Fig. 4, is “no” that half 

is eliminated.  

 

The subsequent second question (Q2) then results in a further in-

creased knowledge that the particle must be in the quarter of the space 

containing cells #1 and #2. Finally, Question Q3 definitively locates the 

particle in cell #2. While it is possible that, by chance, one could have 

guessed that cell correctly, it is always possible to locate the particle 

correctly within an array of N=23 cells with 

 

 2
8 3I(N ) Log N= = =  (9) 

 
binary (yes/no) inquiries. To see whether or not this is a systematic 

feature, consider a 2-dim autom-

aton of N = 32 = 25 identical Figure 5: 2D automaton grid with one 

cell out of N=32 occupied.  
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cells accessible to the single parti-

cle that makes up the test system 

(see Fig. 5). Using the same strat-

egy, first in the horizontal dimen-

sion and then in the vertical dimen-

sion, one subdivides the 4x8 cell 

array into successively smaller 

halves and queries in which of the 

halves the particle is located. Now 

it takes exactly 5 binary (yes/no) 

questions to eliminate all gaps in the knowledge of the state of the sys-

tem. The 5 necessary questions are illustrated in Fig. 5 by labels and 

dividing lines. Again, one finds the relation between the measure (I) of 

missing information and the number of possibilities (N) given in analogy 

to Equ. (9) as 

  

 2
I(N) Log N=  (10) 

 

Again, the information is encoded in terms of the minimum required 

number of probings with binary “yes” or “no” answers. It is encoded in 

“bits.” 

 

Since in the above example there are N equally probable possibilities 

for the particle to reside, the probability for each cell to house the par-

ticle is the inverse, 

 
1

p
N

=  (11) 

 

The information in Equ. (10) can then be expressed also in terms of this 

probability, 

                            2 2
I(N) Log N Log p= = −  (12) 

 

Obviously, the missing information scales trivially with increasing num-

ber (N) of states accessible to the particle. Therefore, a natural measure 

of the relative magnitude of the missing information is the above quan-

tity I(N) per single-particle state (cell): 
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2

I(N)
s p Log p

N
= = −   (13) 

 
In other words, the quantity I(N) is a numerical measure of maximally 

possible randomness of the single-particle configuration. Chaotic popu-

lations result, if the underlying process has completely unrestricted ac-

cess to all system configurations, in which case the observed probabili-

ties model the a priori ones.  

 

The quantity s, which is also known as statistical entropy, is the 

maximum of the information missing to identify the single-particle state 

that will be found occupied in an observation. In other words, this infor-

mation is gained, once the location of the particle is revealed. Since the 

expression shown in Equ. (13) is normalized per state N, one only needs 

only the probabilities p for its evaluation but not the absolute number of 

states. 

 

The above considerations, which are based on the binary (yes/no) 

nature of the property “occupied=bit 1” vs. “not occupied=bit 0”, led to 

expressions of Equs. (10) and (13) in terms of the logarithm to basis 2 

(“bits”). Instead of this function, one often uses the natural logarithm 

e
nx Log x=  (“nats”). The corresponding equations  

 

 I(N) k nN=  (14) 

and 

 
I(N)

k p np
N

= −   (15) 

 

then differ from the original ones by a conversion factor k for the loga-

rithms. The information is expressed in different “units” (nats vs. bits). 

However, it is important that these units really have no dimension such 

as length, time, energy, etc. Values given for information or statistical 

entropy simply reflect the number of binary questions required to es-

tablish the state of the system of interest with certainty. 
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The statistical systems of phys-

ical interest have typically many 

degrees of freedom, for example a 

large number (n ~ 105 - 1023) of 

particles that can be distributed 

over N single-particle states. This 

situation is illustrated in Fig. 6 for 

just two independent particles (1, 

2), thought to be distributed ran-

domly (without preference) over 

all possible states. The states 

(cells) have equal a priori prob-

abilities and are therefore equally probable to receive either of the two 

particles. The missing information on either particle is evaluated as ex-

plained above for the one-particle system. It is obvious that, for N sin-

gle-particle states, the total number of two-particle states is given 

by  = N1·N2=N2. Therefore, the number of binary queries necessary 

to identify a 2-particle configuration equals twice the number needed to 

pin down one particle:   

 

    1 2 1 2
I( ) I(N N ) k nN nN =  = +    (16) 

 

In the following, this problem is generalized to an arbitrary number of 

individual particles and an arbitrary number of single-particle states. 

The conversion constant is set to k=1, implying the information has 

been scaled by a factor of 1/k. 

 

Using mathematical combinatorics, one can easily expand the above 

method of information gathering to an arbitrary large number M of par-

ticles or other objects, and/or to many degrees of freedom. All that is 

required is that the degrees of freedom are independent and not coupled 

to each other and that the states are discrete and countable. Then, the 

total number  of states is given by the product of the numbers i of 

states for independent degrees of freedom i=1,...,M,  

 
1

M

i

i=

 =   (17) 

Figure 6: Two-dimensional two-particle 

system. 
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For the explicit example below, M=2 is used for convenience. 

 

For specificity, let N1 be the number of independent individual parti-

cles that can occupy with equal a priory probability N1 out of the N 

> N1 available single-particle states. The quantity   equals the number 

of N1-particle states that can be formed out of the N available single-

particle states. The problem to be solved is to calculate the number 

( )  of ways the N1 particles can occupy N1 different but equivalent sin-

gle-particle states, while N2=N-N1 states remain unoccupied. For classi-

cal objects, this number is given by the binomial coefficient 

 
( )1

1 1 1 1 2

N N ! N !

N N ! N N ! N ! N !

 
 = = = 

 −  
 (18) 

 

Here, N2 = (N - N1), and N1+ N2= N is the normalization. Because of the 

symmetry of expression(18), the quantity  is also equal to the number 

of possibilities to select N2 objects (unoccupied states) out of N total.  

 

In general, any group of N classical objects can be rearranged by 

permutation in N! = 1·2·3···N different ways, i.e., it has N! permuta-

tions. Then, the number of possible “partitions” of N of the type N1, N2 

,…, NM with each Ni differing only by permutation of its objects is given 

by 
M

1,..,M ii 1
N N !

=
=  . For ii

N N= , the number  of possible configura-

tions of {N1, N2 ,…, NM}, i.e., the number of possible partitions of the 

number N, is equal to the number of total permutations N! divided by 

N1,…,M,  

 ( )1 M
1 M

N!
N; N ,...,N

N ! N !
 =

   
 (19) 

 

This realization provides a straightforward way to extend Equ. (18) to 

an arbitrary number of subgroups of states, distinguished, e.g., by the 

object located on it or any other property such as energy, spin, etc.  

 

The problem is particularly simple for macroscopic thermo-dynam-

ical systems, where the number of particles is large ( 1N 1 ) and the 
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number of available states is even larger (often 1N N ). Then, one can 

always neglect numbers of the order of 1 in comparison with either N1 

or N2. In order to evaluate Equ. (18), one may then use       Stirling's 

formula, 

                               ( ) ( )n n! n n n 1   −                            (20) 

 

As before, one can define as a measure of information the number 

of bits or nats making up the number of equal a priori possibilities. 

From Equs. (14) and (18),  one obtains in the limit of large numbers (» 

1),  

           

1 2

1 1 2 2

1 1 2 2

1 2 1 1 2 2

I : n nN ! nN !

N n(N ) N n(N )

N nN N nN N nN

(N N ) n

nN!

N

N N nN

( nN

N

1

N

) 1 1

n

=  = − − =

 − − − −

= − −

= + − −

−  (21)

 

  

 

or, since N1+ N2= N, 

                               1 2
1 2

N N
I N ln N ln

N N
 − −                          (22) 

 

This yields an information per total number N of states, 

 

                   

2

1 1 2 2
n n

n 1

N N N NI
S ln ln p ln p

N N N N N
=

=  − − = −         (23) 

 

Here, the quantities 

                                                       
n

n

N
p 1; (n 1,2)

N
=  =                   (24) 

 

are the relative probabilities to find in a measurement any N1 of the N 

possible single-particle states occupied (n=1), or any of the N2 single-

particle states not occupied (n=2). The total number N of single-particle 

file:///H:/My%20Webs/Statist_Theory/Chm455_2008/Stirlings_Form.doc
file:///H:/My%20Webs/Statist_Theory/Chm455_2008/Stirlings_Form.doc
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states has been partitioned into two groups of N1 and N2=N-N1, each 

found realized with the respective fractional weights. 

 

If there are more than 2 subgroups of states, e.g. distinguished by 

the objects they carry, one can generalize Equ. (23) to an arbitrary 

number of M subgroups (or partitions of the number N) of states (or 

objects), 

                                    

M M

n n n

n 1 n 1

I
S p ln p ; with p 1

N
= =

= = − =               (25) 

 

The equation on the right in (25) is the trivial normalization of constant 

total probability. This formalism accommodates any partition of the total 

number of individual states into subgroups. For example, it provides the 

same formulas when the index n is redefined to number (n=n1≤M=N) 

the individual single-particle states, or the 2-particle states (

12

N
n n M

2

 
=  =  

 
), etc. In other words, expression (25) also describes 

the information/entropy for M different subgroups of occupied states out 

of the  available to the M particles. 

 

Of specific interest is the trivial case, in which one particle can access 

all possible  = N single-particle states with equal a priori probability. 

Then, Equ. (21) yields  

 

 ( )1I n n=  = −   (26) 

 

or, with a constant, equal (a priori) probability per state, 

 

 1 ; 1,...,np n=  =   (27) 

   

 
1 1

n n

I
s n p np= = − = −

  
 (28) 

 
The total information, summed over all states, becomes 
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1

n n

n

S I p n p



=

= = −   (29) 

 

 

3. Information and partition of probability 

 

The formal information I (Equ. (25)) gained through the acquisition 

of knowledge about which of any of the possible configurations is real-

ized, represents the information that the totality of nats or bits of the  

states can carry. This information is numerically equal to the number (=

2og  ) of questions that have to be posed in order to obtain certainty.  

 

It is plausible that any asymmetry, any restriction in the probabilities 

for the various system configurations would imply a bias, which reduces 

the information content. For example, a 12-bit computer cell with two 

broken bits can not carry more information than a 10-bit word. There-

fore, an equipartition of the total probability 

 

 i ii
P p , p p const.= = =  (30) 

  

among all system states (configurations) maximizes the infor-

mation and the statistical entropy (cf. Equ. (13)). In such a situa-

tion, where all configurations have an equal a priori probability, a many 

times repeated experiment is expected to exhibit every configuration 

with the same equal a posteriori (empirical) probability. For example, 

measuring 10000 times the same system with 3 equally probable con-

figurations will show each one of them approximately 3300 times (1/3 

of the total number of interrogations).    

 

Mathematically the partition of the total probability among the sys-

tem configurations that corresponds to maximum information (entropy) 

can be obtained by varying the probabilities pn under the constraint of 

the normalization of all probabilities. This task is achieved efficiently 

with the method of Lagrange multipliers. To illustrate the method, 

consider a 1-dimensional function f(x). Here a “constrained maximum” 



      

Information/Prob   
W. Udo Schröder 

 

15 

of f(x), under the constraint g(x)=c=const., is found by searching for 

the maximum of the related function 

 

 f ( x) f ( x) g(x) c= − −    (31) 

 
where  is an arbitrary constant. Obviously, only along a path where the 

constraint g(x)=c is fulfilled, are the functions f and f identical, 

f (x) f(x)= . 

 

In the case of interest here, the constraint is given by the normali-

zation condition of the total probability for any of the  configurations,  

 

 1 i

i 1

g(p ,..., p ) p 1





=

= =  (32)  

 

Then, in the usual way, the maximum of the information is found by 

setting to zero all first derivatives of f with respect to individual proba-

bilities pn (for configuration n to be occupied, n=1,…,,),  

 

                    ( )m m i
n m 1 i 1

p n p p 1 0
p






 

= =

   
 − + − = 
    

         (33) 

 

The normalization condition of Equ. (32) has been multiplied by a yet 

undetermined but constant Lagrange multiplier  and added to the 

function to be maximized. This procedure yields 

 

 ( )n n
n

1
n p p 0 n 1,...,

p
− −  + = =   (34) 

                                                               

or 

                                 ( )nn p 1= −                          (35)

   

and  
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( )1

np e p const.
−

= = =                      (36) 

implying an equal (a priori) probability for all n. From the normali-

zation condition n

n 1,..,

p 1

= 

=  it follows immediately that 

                                 np p 1 const= =  =                       (37) 

and 

 ( ) ( )1 1
n

n 1 n 1

1 p e e
 

 
− −

= =

= = =     (38) 

 

which determines the Lagrange multiplier. This is the condition for max-

imum missing information concerning the locations of the particles 

of interest. It also signifies the situation for a maximum of infor-

mation gained, when the occupation of the single-particle states is 

disclosed. 

 

In analogy to Equ. (25), the statistical entropy used in statistical 

mechanics for a system of N particles populating a set of  configura-

tions (“micro-states”) is defined as 

                                                 ( )B n n

n 1

S k p n p 0



=

= −                                   (39) 

 

where 231.38 10Bk J K−=  is the universal Boltzmann constant, which 

endows this information quantity with a non-trivial but unnecessary di-

mension that can obscure the real meaning of this important observable. 

If the system is interrogated N times and configuration n is observed Nn 

times out of N, the a posteriori (empirical) probabilities are deter-

mined by pn = Nn/N. These probabilities fulfill the normalization condi-

tion   

                                      n
n

n 1 n 1

N
p 1

N

 

= =

= =                       (40) 

 

Following the same arguments as above for the information, one 

finds that the entropy is maximized for an equal population of all 
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configurations (micro-states) with equal a priori probabilities pn 

= 1/. In this case of independent individual objects that occupy with 

equal a priory probability all  available states, Equ. (14) translates 

into the maximum statistical entropy, 

 

 ( )max B B n n

n 1

S S k n k p n p 0


=

= =   = −   (41) 

 
The left hand side of this equation is the famous Boltzmann Equation 

relating the number () of available micro-states to the phenomenolog-

ical entropy, a state function defining macroscopic system states in phe-

nomenological thermodynamics. The right hand side closes contact to 

the microscopic information content. The constant kB, providing the in-

formation observable with an artificial dimension, makes more sense in 

phenomenological thermodynamics. The entropy is naturally bounded 

by the two fixed limits,  

 

 max0 S S   (42) 

 

where Smax is attained for equal a priori probabilities, for any physical 

system it is itself a distribution that can be characterized by average 

expectation value, fluctuations and higher moments.  

 

In a similar fashion, the method utilized above for evaluating the 

maximum information/entropy under the constraint of an equipartition 

of the total a priori probability can be extended to other constraints. For 

example, for a multi-particle system it is important how the system en-

ergy E is distributed among all  configurations, i.e., micro-states. For 

an isolated (“micro-canonical”) system the total energy E is con-

served, as are other observables. Then, all members of the set of pos-

sible equivalent configurations must have exactly the same energy,  

 

 
iE E i 1,....,= =   (43) 

 

Otherwise, the configurations would not be completely equivalent, i.e., 

not have the same a priori probabilities. In a statistical ensemble, this 
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fixed energy E would be distributed over all members of the ensemble 

with equal a priori probabilities. Systems that are not completely iso-

lated and allow some exchange of energy with their surroundings are 

called “canonical.” Here, the energies of the various configurations are 

subject to fluctuations about the averages, <Ei>. Exactly equal a 

priori probabilities cannot be expected for these configurations. 

At most some energy averages can be well defined and assumed to have 

approximately the same value for every configuration: 

 i i i

i 1

E E p : E


=

=  =  (44) 

 
Here, iE  is the weighted average (mean) taken over all configurations. 

The condition that only small variations should exist between the mean 

energies Ei of the configurations implies that the mean square devia-

tion (variance) of these energies  

 

 ( )
22

E i i i

i 1

E E p 0


=

= −    (45) 

 

be small compared to the average, i.e., E E . For an isolated, micro-

canonical system, there are no energy fluctuations, E 0 = . 

 

Considerations of the maximum constrained information will re-

veal whether such a situation is possible and what the a priori probabil-

ities pi would look like. Certainly, because of an additional con-

straint, for a given energy E, the information/entropy cannot ex-

ceed the one obtained for a micro-canonical system with a mini-

mum of constraints (total probability normalized). 

 

A search for the maximum information/entropy has to take into ac-

count now two boundary conditions, Equ. (32) and Equ. (44). Therefore, 

the maximization condition (33) has to be extended to  

 

 ( ) j j

j 1

B m m 1 2
n m 1

i

i 1

k p n p 0
p

p E p1 E


 




= =



=

      − −− + + = 
        

   (46) 
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with two Lagrange multipliers, 1  and 2 . For the constraint maximum 

information/entropy one now obtains the condition 
 

  ( )B n 1 2 nk n(p ) 1 E 0 − + + + =   (47) 

 
This result implies that 

              1
n

n2

B

p exp 1 n 1,.. ,
E

.
k

  +
= − =  

 
 (48) 

 
where 1 B/ k  is dimensionless and 2 B/ k  is an inverse energy. Obvi-

ously, the probabilities are not equal but depend on the energies En of 

the corresponding states. The normalization condition is now written as 

   

1 21 Enk kB B
n

n 1 n 1

1 p e e

   − 
 

= =

= =    (49) 

 
a product of a constant and an energy sum. Obviously, the constant 

factor in Equ. (49) is equal to the inverse of the sum over the individual 

energy terms, 

 

 

1 21 Enk k EB B n

n 1 n 1

Z e e : e

 



   − 
−  

= =

= = =   (50) 

 
with the definition 

2 Bk 0 = −  , the inverse of a characteristic energy. 

This function Z=Z() is also known as the (canonical) partition sum. 

According to Equ. (50) it can be cast both into a closed form (left) and 

as a sum over all configurations. Hence the normalization condition is 
recast as 

 
En

n

n 1 n 1

1
p e 1

Z


 

− 

= =

=  =   (51) 

 

This is a general result, valid for any number of configurations, their 

energy spectra (En) and varied system parameters 1 and 2.  
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Often groups of several ( ) states have the same energies, i.e., they 

are energy degenerate and bunched at some energy levels E, E’, etc. 
If the degeneracy (number of states at energy level E) is given by the 

function ( )E , the partition function in Equ. (50) can be written  

   ( )
( ) ( ) ( )

( )E E E E E

...E times E times E

Z e ... e e ... e ... E e    

 

 
 −  −  −  −  − 



= + + + + + + =   (52) 

 

According to Equ. (48), there is a term-by-term equivalence in Equ. 

(51). One therefore concludes that the a priori probabilities for ca-

nonical system configurations are not equal but dependent on 

the energy. Configuration by configuration, one has the normalized 

probability 

 En
n

1
p e

Z

− 
=   (53) 

 

Accordingly, the probabilities for the populations ( )p E  of energy levels 

E are given by 

 ( )
( ) EE

p E e
Z

 − =   (54) 

 

The requirements that the probabilities must be normalizable and 

that variations between the mean energies of equivalent (similar prob-

abilities) be small suggests that the inverse-energy parameter  be pos-

itive,  > 0. Then, the populations for system configurations decrease 

exponentially with their energy, Configurations with extreme energies 

are simply not significantly populated. In fact, for thermodynamic sys-

tems independent considerations discussed further below show a rela-

tion of the parameter with the “canonical temperature” T, i.e., 

( )1 Bk T = . This implies that the information contained in such a system 

is incomplete at any temperature, reduced due to the decreased proba-

bility for energetic states. 

 

The partition sum contains all relevant physical information on the 

system. Z is a generating function for the system probability dis-

tribution. This feature can be demonstrated by the following examples. 
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The derivative of ( )n Z  with respect to the energy Ei projects the prob-

ability of configuration i out of the partition sum, 

 

 ( )
1

1 E En i
i

i i n

n Z e e p
E Z E Z

 



−  − 

=

 − 
− = = =

    (55) 

 

Here the chain rule 

 ( )
1

n Z Z
x Z x

 
=

 
 (56) 

 
has been used to generate the required normalization factor 1/Z. Simi-

larly, taking the derivative of ( )n Z  with respect to - produces the mean 

energy per configuration: 

 

          ( ) n nE E
n n n n

n 1 n 1 n 1

1 1
n Z e E e E p E E

Z Z

 

 

  
−  − 

= = =

 − 
− = = =  = =

 
    (57) 

 

Taking the result from Equ. (47), multiplying by pn and summing over 

all configurations yields a connection between entropy, partition func-

tion and mean energy per configuration 

 

                   

( ) ( ) 

( )

B n n 1 B 2 B n

n 1

B n 1 n 2 n n

n 1 n 1 n 1

B 1 B B

0 k p n(p ) 1 k k E

S k p p p E

S k k E S k n(Z) E

 

 

  



=

  

= = =

= − + + + =

= − + +

= − − −   = −  −   



    (58) 

 
This results finally yields an expression for the macroscopic (mean) in-
formation/entropy in terms of the partition function Z and the expecta-

tion value of the energy, 

 

 BS k nZ E= +    (59) 

 
Equivalently, one can write for the partition function for a canonical 

system, 

 S k EBZ e e − =   (60) 
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This function replaces that for an isolated system, which according to 
Equ. (41), is simply the number of accessible states, 

 

 S kBe =  (61) 

 

with the dimension-less statistical entropy BS k counting the number of 

“nats” measuring the size of the state space. 

 
So far, the meaning and value of the parameter   appearing in the 

canonical partition function, have remained hidden. However, for any 

system obeying the Equ. (59), the parameter obeys the relation 
 

 
( ) 1B

B

S k E
or

E S k




 
= =

  
 (62) 

 

It can therefore be evaluated for a system of interest, given specific 

relations between state energies and probabilities. Note that the deriv-

atives in Equ. (62) are partial derivatives testing explicit dependencies, 

to be taken while keeping other coordinates constant.  

 
 

4. Illustrations of partition functions 

 

A detailed evaluation of the partition function is necessary for an in-

terpretation of macroscopic observations in terms of the microscopic 

structure of a system, e.g., in terms of the internal energy spectrum. 

The task can be very demanding for quantal multi-particle systems with 

coupled degrees of freedom and correlated particles, e.g., for fermionic 

systems where the individual particles are indistinguishable and subject 

to the Pauli Exclusion Principle. Particle correlations are important for 

high particle densities in configuration or momentum space but loose 

efficiency at low densities and/or total internal energies. On the other 

hand, many classical d.o.f. such as molecular or nuclear rotations and 

vibrations are independent at low excitations but influence each other 

at higher energies. In the following, a few observations relevant to 
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decoupled d.o.f. are made in order to illustrate basic structure of parti-

tion functions for various d.o.f.  

 

For a system with multiple independent degrees of freedom, for ex-

ample, a molecule with a set (i=translational, rotational, vibrational, 

electronic, nuclear,...), the total number of states   for is the product 

of the corresponding numbers i for the individual d.o.f. Its total energy 

E E=  is the sum over the individual energies ( )i nE E i= . Therefore, 

the total partition function Z is the product of the individual functions Zi 

corresponding to each of the d.o.f., 

 

 ( ) ( ) ( )

i

E in
i

ni

Z Z e



− 

= =   (63) 

 

Here, the energies ( )E in  run over the entire energy spectrum associated 

with the i th d.o.f. In other words, as long as correlations can be ne-

glected (quasi-classical, Boltzmann approximation), the partition func-

tion for such a system can be written as 

 

 trans rot vib electr nuclZ Z Z Z Z Z=          (64) 

 

Furthermore, for a quasi-classical N-particle molecular system, 
neglecting correlations, each partial partition function is a product 

of identical single-particle partition functions zi. For example, for 

translational motion in 3D space {x, y, z}, the s.p. partition func-

tion can be approximated by  

 

 

3

, ,

n n nx y ztrans i

n n n ix y z

z e e
   

 

 
−  + +   −  

 
= =  

 
 

   (65) 

 

Here, the s.p. energy scheme of a particle in an infinite cubic 3D 

box of side length a is adopted. Such an infinite box accommo-

dates the unrestricted translational motion of a free particle of 
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mass m. For mathematical reasons, one adopts first a finite box 

but lets its dimension grow indefinitely in the final results. 

 

For a finite side length the particle-in-a-box energy eigen values 
are given by a set of integer quantum numbers ni 

 
2

2

28
i i

h
n

ma
 =   (66) 

Performing the transition to the infinite box, a, the summation 

over discrete quantum numbers ni in the partition sum can be re-

placed by an integral over continuous quantum numbers n: 

 

 

3
2 32

28
2

0

2
lim

h
n

trans trans ma
a

a
z z dne m a

h

 




−  

→
→

 
  

= = =        

  (67) 

          

Since the volume is given by V = a3, the translational partition 

function can also be written as 

  

 3 2

3

trans

therm

V
z 



−=   (68) 

 
In this expression, therm is the so-called thermal wave length, 

 

 
2

2therm

h

m







=  (69) 

 
With this detail knowledge of the s.p. translational partition function, 

one can now calculate the expectation (mean) value of a particle in a 

canonical system. From Equ. (57) one has 

 

 3 2 3 1

2
n z n 

  

− 
= − = − = 

 
 (70) 
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In Equ. (70) the fact has been used that there is only one factor in the 

function z() that actually depends on the parameter . Obviously, the 

mean energy of a free particle in a canonical system can, and has been, 

measured to be 

 
3

2 Bk T =    (71) 

In the development of thermodynamics, the mean kinetic energy of a 

free particle has been identified (by convention) with the product of 

Boltzmann constant kB and temperature T. Therefore, one has to iden-

tify,  

 
1

Bk T
 =


 (72) 

 
The heretofore unknown model parameter  has now been linked to ex-

perimental observation. It is an inverse energy which at room temper-

ature T=300K has the value, 

 

 ( ) ( )1 300 300 25 1 40BK k K meV eV − =  = =  (73) 
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5.  Phase space evolution and H-Theorem 

 

Systems of N real particles occupy domains in 6N-dimensional phase 

space, rather than cells of a CA. Phase space is a product space de-

scribed by continuous 3N spatial  iq , i 1,...,N=  and 3N momentum 

 ip , i 1,...,N=  coordinates. Therefore, the probabilities pi of discrete 

cells i discussed previously is replaced by continuous, time dependent 

(t) distribution functions ( ) i if q ,p ,t , i 1,...,N=  for the N particles. These 

functions are probability densities normalized to unity when integrated 

over the entire phase space, 

 

                    ( )  3 3
i i id q d f q ,p ,t 1 i 1,...,N =   (74) 

 

Following the same line of arguments as before, the time dependent 

information content of an occupied multi-particle state is contained in 

the Boltzmann H-function (eta-function)  

 

   ( ) ( ) 
N

3 3
i i i i i i

i 1

H(t ) : d q d p f q ,p ,t nf q ,p ,t 0
=

=      (75) 

 

The H function is obviously equivalent to the negative of the information 

S given by the statistical entropy (cf. Equ.(25)). It is negative since the 

distribution functions are probability densities.  

 

Based on very general principles, predictions can be made as to the 

spontaneous time evolution of the H function, or the equivalent statisti-

cal entropy function S. In the following, the entropy S(t) is expressed 

as 

 ( ) ( )( ) ( )B n n n

n 1 n 1

S(t ) H(t ) k p t n p t 0 p t 1
 

= =

= − = −     (76) 

 

in terms of time dependent (normalized) probabilities for discrete sys-

tem states numbered by n.  
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This time dependence of the entropy function reflects an underlying 

dynamics, a transport process, which tends to redistribute the im-

portance (or population) of the microscopic states and all of its attrib-

utes. The trend is equivalent to an entropy flux or current  

 

 :s

dS
j

dt
=  (77) 

 

If js has a finite magnitude, it defines a direction of increasing or de-
creasing diversity or spread in a priori probabilities.  

 

 The a priori probabilities pn can be regarded as populations of these 

states which can be queried in experimental observations. If these pop-

ulations are time dependent, there have to be microscopic transition 

probabilities wnm connecting any state n and m. The transition probabil-

ities describe the rate of change in the population of state n due to gain 

and loss from and to state m according to a balance “Master Equation,”  

 

 
( )

( ) ( )n
mn m nm n

m Gain Loss

dp t
w p t w p t

dt

 
 

=  −  
  

  (78) 

 

For microscopic, quantal reasons, the transition probabilities are sym-

metric, wnm = wmn, which ensures time reversal invariance (detailed bal-

ance). Obviously, the Master Equation (78) is a classical approximation 

in that it neglects quantal interference terms involving transition ampli-

tudes, rather than probabilities. 

 

Now, the time derivative of the entropy function in Equ. (76), the 

entropy flux (Equ. (77)), can be calculated: 

 

( )
( )( ) ( )

( )
( )n n

B n n n

n 1 n 1

dp t d np tdS(t ) d
k n p t p t ; p t 0

dt dt dt dt

 

= =

     
= − +        

     
   (79) 

 

Evaluating the derivatives one obtains 
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( )
( )( ) ( )

( )
( )

( )
( )( )

( )

n n
B n n

nn 1

n n
B n B

n 1 n

0

dp t dp tdS(t ) 1
k n p t p t

dt dt p t dt

dp t dp tdS(t )
k n p t k

dt dt dt



=



=

=

    
= − + =      

     

 
= − −  

 



 
      (80) 

  

The last term drops out because of the conservation of total probability 

implied by Equ. (79). Now, inserting for dpn/dt the expression given by 
the Master Equation (78), the second row in (80) reads, 

 

 ( ) ( )  ( )( )B mn m n n

n,m 1

dS(t )
k w p t p t n p t

dt



=

= −  −          (81) 

 

Here, use has been made of the symmetry of the transition probabilities 

wmn. Since the two indices n and m run over the same range, this ex-

pression can also be written as, 

 

 ( ) ( )  ( )( )B mn n m m

n,m 1

dS(t )
k w p t p t n p t

dt



=

= − −  (82) 

 
Taking the average of Equs. (81) and (82), a more symmetric expres-

sion is obtained fro the time rate of change of the entropy function: 

 

 ( ) ( )  ( )( ) ( )( )B
mn n m n m

n,m 1

kdS(t )
w p t p t n p t n p t

dt 2



=

 = − −
   (83) 

 

However, since ( ) 0d n p dp , all terms in the sum are non-negative and 

therefore, 

 
s

dS(t ) dH(t )
j 0

dt dt
= = −   (84) 

 

According to this derivation, the entropy S increases and the H func-

tion decreases in time, as long as the transition probabilities are finite, 

0nm mnw w=  . The larger the differences between the populations pi of 

different states are, the higher is the rate of entropy changes. When  
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 .; 1,.....,np const n =   (85) 

 
the S  (or H) functions no longer change. The system described by such 

function has reached its asymptotic stationary state, also known as 
equilibrium state. This equilibrium state is characterized by maxi-

mum entropy corresponding to equal a priori probabilities pn and 
chaotic dynamics. While for a given theoretic model the expectation 

values of the functions S and H can be calculated exactly, there are also 
higher moments (fluctuations) to consider, since they depend on sto-

chastic parameters, the probabilities pn. 
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6. Gibbs stability criterion for random states 

 

The situation of maximum entropy, where all accessible states are 

uniform and have equal a priori probabilities, is called “equilibrium.” It 

will be shown further below how these information/entropy functions 

change in complex dynamical processes.  

 

All systems where accessible states are not uniformly populated 

are in states of disequilibrium and have statistical entropies less 

than the maximum possible: 

The equilibrium state is therefore defined by the variational condition 

 

 ( ) ( ) ( )i i max i i equ i iS q ,p S q ,p : S S q ,p 0= = → =  (86) 

 
Here,  stands for a variation with respect to the individual probability 

densities. Once a multi-particle system is in such an equilibrium state of 

maximum entropy, there is conceptionally no net driving force that 

would force it out of this state in one direction or another. However, 

such an equilibrium state can be either stable or unstable. Microscopi-

cally, there are always quantal fluctuations in all coordinates. Even sys-

tems presumably at rest show “zero-point fluctuations.” In addition, 

physical particles move even classically from phase space cell to phase 

space cell, changing individual occupation probabilities (pi or ( )i if q ,p ,t ) 

instantaneously away from their respective equilibrium values. The 

magnitude of these fluctuations depend on their origin in classical or 

quantum dynamics. They may vary in size and follow a distribution in 

time or frequency (chance of occurrence). Therefore, the actual entropy 

at a given instant will reflect these fluctuations. 

 

Connecting to discussions of stability in previous sections, one can 

obtain a stability criterion by studying the expansion of the entropy S of 

an actual system state about the equilibrium state ( S 0 = ),  

 

 2 2
equ equ

1 1
S S S S .... S S

2 2
  = + + +  +  (87) 
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From this relation it simply follows that the state of maximum entropy 

is stable, only if fluctuations away from this state reduce the entropy, 

 

 2S 0   (88) 

 

This “Gibbs” stability criterion has to be applied in specific cases to iden-

tify the stable equilibrium. Stable equilibrium states are attractors of 

complex system, as will be demonstrated in later sections. 
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7. Specific probability distributions 

 
See tutorial 


